e SCHMID"

Whitepaper
The Charm and Benefit of Graphical
Programming with LabVIEW

- &
&
®
m

This whitepaper is ideal for anyone who is looking for a quick and easy introduction to graphical
programming and wants to familiarize themselves with LabVIEW and its data-centric principle. The
advantages and disadvantages of this graphical method are also addressed, as well as the
importance of the community. And last but not least, there is an outlook on how NI R&D
envisions the future of LabVIEW in the world of smart software assistants.

Contents

1 Whatis the difference between LabVIEW and "G"? ... 2
2 An Easy-to-Understand Analogy t0 REAILY........coooiiiiiee e 2
3 Areal" Programming LANGUAGE 7oviirieieeeeeee e 3
4 A Graph and Data as the underlying Archit@CtUrEccoooiviioiieeeeee e 4
5 The Secret behind LabVIEW'S PrOQUCEIVITYo.oiviiiieecoeeeee e 4
6 Advantages and Disadvantages Of LADVIEWcoocoiiiiiiooeeeeeeese e 5
7 The power of the NI Community - it's 0k to have fUN! ..o 6
8 The Future of LabVIEW With GENErative Alo 7
D GIOSSANY e 9

Schmid Elektronik AG | Mezikonerstrasse 13, CH-9542 Minchwilen, Switzerland | schmid-elektronik.ch

LabVIEW stands for "Laboratory Virtual Instrumentation Engineering Workbench". It is a
development environment designed for measurement and control tasks. Since its first
release on the Mac in 1986, LabVIEW has been developed as an interface to
measurement and automation devices. This language is comfortably abstract, yet
hardware-oriented and has grown up with physical signals. Over the years, NI developed
scalable and modular hardware: the PXI, the CompactRIO and the single board RIO, to
name a few. This led to the NI platform, which seamlessly combines hardware and
software and measurably simplifies application development thanks to a high level of
abstraction.

1 What is the difference between LabVIEW and "G"?

The key and strength of LabVIEW lies in "G", the graphical programming notation. "G" is the
graphical code designed for data flow that we create in the LabVIEW development environment
and which is based on a mathematical graph network. Many consider LabVIEW and "G" to be one
and the same, and for the sake of simplicity we will now do the same here. Interested readers can
find further details on LabVIEW in this WIKIPEDIA entry or in this technical article.

2 An Easy-to-Understand Analogy to Reality

Let's take a closer look at the LabVIEW terminology and basic philosophy. Every program in
LabVIEW is a virtual instrument: a VI. So if | create a program called "Energy Measurement", the
program file is called: Energy Measurement.vi.

LabVIEW was developed from the outset by engineers for engineers. This is why many terms build
a bridge to the everyday life of technical developers, such as an oscilloscope.

- = =
BUIEW Hands-On
Masdn s ot o ’., Smea _'—:-‘ uﬁq‘" i
’ ==1 L3
e 1
ety Wy = o =] E
o . — = J 'A-
-t ! =]
- bggemg =g
smie] |
‘!"i' a
- /S
= - s

Fig. 1| In the real instrument (left, image: Tektronix), electrons flow in wires between components.
In the virtual instrument (right, image: NI), data flows between nodes.

Page 2

https://de.wikipedia.org/wiki/LabVIEW
https://www.electronics-notes.com/articles/test-methods/labview/what-is-labview.php#:~:text=LabVIEW%20is%20a%20visual%20programming,workbench%20for%20controlling%20test%20instrumentation.

A real oscilloscope has signal inputs and a screen output with a control panel. In LabVIEW, there
are different types of inputs and outputs that generally mimic what we can see on a measurement
device. In the current oscilloscope example, a front panel shows what | see on the control panel of
the real thing: knobs, buttons and a screen with the signal on it.

Let's take a look under the hood. In the real instrument, electrons flow in wires from component A
to component B. As with the real instrument, we can also look inside the virtual instrument. There
are also wires. But instead of electrons, it is data that flows from node to node. In LabVIEW, the
actual code is a software diagram analogous to the hardware circuit, which functions according to
the data flow.

3 A 'real" Programming Language ?

A LabVIEW diagram, as we call this circuit diagram, is continuously translated into machine code
and executed on the target system at the touch of a button. Even though it is graphical and not
text-oriented, LabVIEW still uses familiar, classic programming principles. For example, constructs
such as data types, variables, loops, recursion, branching, event handling and object-oriented
approaches can also be found here. What's more, at any point in the graphical code, we can
directly access underlying hardware or functions of the operating system, e.g. "wait 10
milliseconds". All in all, LabVIEW differs from purely model-based approaches or low- and no-
code. The question in the title can be answered with "Yes".

Init —p |y o> * 2O0E &
‘171 BT Heartbeat 1
o | O,) (D ez
T 51 [8]_fiicoumer 3% [T |
Measure Inclination s ETJ LTJ _&
s (ol Gfs:]
[[}—#GT TASK 1 (cooperative) [HEE) TASK 2 (cooperative)

@ [Em [O]
]\ Out of ing 53} i b E‘ —_—
In Range 5 || | R Hesabest 3
- Range core i} . |
Shut 5 &> . =

down

SUPERSTATE

=4

FLEI TASK 3 (preemtive)

Fig. 2 | Perhaps this is the wrong question in view of the many programming models
that can be flexibly embedded and executed in LabVIEW?

4 A Graph and Data as the underlying Architecture

LabVIEW is data-driven and defines data as the main concept behind every program. Instead of
sequential instructions, it is the data flow that determines the order of execution. Behind this is a
mathematical construct of a petri network, which uses graphs with nodes and edges to represent
process states. So the principle behind LabVIEW is a powerful combination of a graph model, a
data driven philosophy and real-time execution, which allows us to master several time domains
at once: from milliseconds to nanoseconds.

[)
A — P "%
L g N
lB.— POI

:To—viFj
o B R s &
. D-— J

Fig. 3 | A powerful Petri net of nodes and edges works behind LabVIEW.
It is executed in parallel by nature.

In addition, LabVIEW can be used across the entire value chain.
1. Proof of Concept (PoC)

Minimum Viable Products

Prototype

Series Product

Testing

s W

This makes it a good example of how a language and development environment that has
matured over decades can keep pace with today's most modern trends and requirements.

5 The Secret behind LabVIEW's Productivity

Programming in LabVIEW is measurably faster compared to text-based languages. The reason for
this lies in the way our brain works and how it perceives graphical code. Our neurons and
synapses show a certain similarity to the nodes and edges of a LabVIEW program. A graphical
block diagram visually representing the flow of data between nodes, seems more intuitive for
some software developers than individual, consecutive text instructions.

Page 4

6 Advantages and Disadvantages of LabVIEW

Advantages

1.

The graphical user interface is flexible and easy to use. Most engineers and scientists can
learn the application very quickly.

LabVIEW offers a universal platform and powerful libraries and frameworks for numerous
applications in different areas.

Different time domains can be mastered using the same approach:

from [ms] (PC) to [us] (microcontroller) to [ns] (FPGA).

Thanks to the same language for the entire value chain (proof-of-concept, minimum viable
products MVP's, prototypes, series product and test), the code developed in these
different phases can be reused.

LabVIEW can be used on third-party hardware and integrates C/C++, Python and M code.
Nowadays, some parts of the environment are planned to become open source.

There is a large, vibrant and globally active community.

LabVIEW is proprietary. Some companies may not want to use a product that comes from
a single source and does not follow the open source philosophy.

Its simplicity makes it tempting to "play" and thus to create ad-hoc programs that later
grow organically. However, serious software engineering and a scalable architecture are a
prerequisite for large applications, even with graphical approaches.

Operating costs - although in line with similar industry products - should be considered
before implementation. LabVIEW is not a low-cost solution! However, the LabVIEW
Community Edition is now free for Students (Reference: NI-Connect Keynote 2024).
Graphic code comes at a cost, especially in the price-sensitive embedded sector. Reason:
overhead and hardware. Low-cost microcontrollers are out of reach. The minimum
requirement for a reliable application is the SOM and this hardware has its price.

For those who have been used to text programming for a long time, graphical
programming may take some time to get used to.

LabVIEW users will have to wait for the advantages of generative Al, which is currently
used in text-based programming. At the time of writing (mid 2024), NI R&D is working on
it: code name "Nigel"

Page 5

7 The power of the NI Community - it's ok to have fun!

The true power of NI and LabVIEW lies in its globally active community. It exchanges ideas in
countless forums and maintains local user groups. The emotional closeness of these programmers
to LabVIEW is always in the air. In addition to many advantages, we often struggle with
disadvantages in everyday life. On the whole, however, the community agrees that LabVIEW
supports our way of thinking, makes us strong, productive and successful and that graphical
programming is simply fun. The former NI slogan comes to mind: "It's ok to have fun!"

Fig. 4 | The Swiss LabVIEW User Group founded in spring 2024.

The Swiss LabVIEW User Group is one such local group. It was founded in spring of 2024 by
Daniel Roth (PI Electronics AG) and Marco Schmid (Schmid Elektronik AG). A simple idea turned
into a successful event with over 100 participants, 20 speakers, 6 tracks, 20 presentations, 7

LabVIEW training sessions and 2 hands-on workshops on team & leadership. The relaxed and
electrifying startup feeling was magical... For the Swiss LabVIEW community, this event was an
important and positive gathering that filled a multi-year vacuum. The three most important
findings:

1. NI remains strategically independent in the new constellation under EMERSON
and R&D is once again actively driving LabVIEW forward.

2. The community spirit is reminiscent of the early days of NIDays,
when the presentations were similarly "nerdy".

3. We as LabVIEW users in the community are ready
to increase our knowledge by sharing.

Become a member of the following two local user groups on the NI website:
Swiss LabVIEW User Group and Swiss LabVIEW Embedded User Group!

Page 6

https://www.linkedin.com/groups/12975122/
https://www.linkedin.com/in/daniel-roth-1773ab68/
https://www.linkedin.com/company/pi-electronics-ag/
https://www.linkedin.com/in/marco-schmid-boesiger/
https://www.linkedin.com/company/schmid-elektronik
https://forums.ni.com/t5/Swiss-LabVIEW-User-Group/gh-p/swiss-labview-user-group
https://forums.ni.com/t5/Swiss-LabVIEW-Embedded-User/gh-p/swiss-labview-embedded

8 The Future of LabVIEW with Generative Al

LabVIEW has long been a pioneer in the world of modern software development, giving its users a
competitive edge year after year that was well ahead of its time. Together with NI's consistent
hardware strategy, this led to the highly efficient development platform that we know and
appreciate today and made it easy to get started with an otherwise complicated technology. Even
today, this makes the often individual LabVIEW user in his company a successful "NI fox" who can

quickly solve even complex tasks.

P POWERED BY

LabVIEW

EC

Fig. 5 | Why choose between LabVIEW and Python, when both languages
can be elegantly combined? (Image: Herzog Engineering)

NI has neglected the academic market in recent years, losing its former de facto lead to Python.
With Python, a new, equally easy-to-learn and very powerful programming language came into
play and took over the role of top dog. And it is open source! Combined with the recent trend of
programming assistants, this is likely to lead to a quantum leap and could overtake previously
successful paradigms such as graphical programming.

Page 7

Nige

Hil 6

. I'm Nigel. How can | help?
write a vi that calculates the volume of a cylinder

Nige!

Sure! To calculate the volume of a cylinder, we need two inputs: the radius of the base (r) and the height (h). The formula for the
volume of a cylinder is v = nr2h . Here's the VI

© Using LabViEW

=
racios [2~ (2> iitTvolume
height (B85 [3775

Fig. 6 | The NI version of an Al assistant (Image: NI)

What if the graphical power and charm of LabVIEW could be combined with the efficiency of Al-
based coding? The answer from NI R&D is "Nigel"! This future smart assistant was presented for
the first time at NI Connect 2023 and again in 2024. Nigel is NI's mascot: the eagle in the former
blue National Instruments logo. At the Swiss LabVIEW User Group Event, we presented how this
intelligent assistant feels in everyday programming. Nigel can do something like:

e Write VI's! Typical case: | need a 5th order low-pass filter with a cut-off frequency of
50kHz. As a result, | get a code snippet that | drag & drop into my application.

e Analyze VI's that have been inherited from a previous user

e Write VI descriptions and generate icons

e Accelerate Quick Drop

e Read device specifications and write tests for them

e VI Set up unit tests

Conclusion: Nigel will offer programmers in the domain-specific LabVIEW development
environment what current language models deliver for text-based languages.

Page 8

9 Glossary

Chapter 1 LabVIEW Stands for graphical programming with the language «G»
Language «G» Graphical code based on data flow
Graph Mathematical network of nodes and edges
Chapter 2 Vi VI = Virtual Instrument = Function block in LabVIEW
Oscilloscope Electronic measuring device
Hardware Circuit Graphical representation of an electronic circuit
Data flow It is not the sequence that determines the programme flow, but the data
Chapter 3 Machine code A computer program in a form that the microprocessor understands
Target System The computer on which machine code is executed
Programming The basics of a typical programming language such as constants,
Principles variables, branching, loops, recursion, etc
Operating System A collection of programs for the operation of a microcontroller
Model-based Creating executable software from abstract models
Low-Code Visual, simple programming
No-Code Programming via configuration of graphic blocks
Chapter 4 Petri network Graphical representation of process states with nodes and edges
Graph model The maths model underlying the graph (nodes & edges). model
Data-driven All organisation and administration revolve around data
Real-time Specified time that certain processes may consume
Proof of Concept Basis for deciding whether a project can be implemented
Minimum Viable Only have the most essential functions to test an idea.
Products The short form is called: MVP
Prototype Tangible representation of a design concept, close to the series product
Series Product Can be multiplied by production in a series
Testing The function of hardware and/or software is verified
Chapter 5 Neurons A nerve cell as the basic unit of our nervous system
Synapses A connection between two nerve cells
Nodes Here: a connection point in computer science
Edges A connection between two nodes

Page 9

Chapter 6 Frameworks A basic structure for software
Microcontroller Here: small, powerful computers for embedded systems
FPGA Reconfigurable logic: Field Programmable Gate Array
C/C++ C is the most common language for microcontrollers.
C++ is object-orientated.
Python Universal, higher programming language, often runs interpreted.
M-Code Code generated in M, optimised for mathematical problems
Community A community of people pursuing the same goal
Proprietary Software that is manufacturer-specific, such as Nl in this case.
Open Source Publicly accessible code that is shared in communities
Software Processes and technology for the production and development of
Engineering software
Software Modularisation, frameworks, object orientation, design patterns
Architecture
Embedded Combination of hardware and software for embedded systems
SOM Here: the System on Module (sbRIO9651) from NI
Chapter 7 Local LabVIEW A local group of LabVIEW users who exchange information and share
User Groups experiences on a specific topic.
Swiss LabVIEW The user group founded by PI Electronics and Schmid Elektronik, whose
User Group members are mainly from the DACH region.
Swiss LabVIEW The user group founded by Schmid Elektronik focusses on graphically
Embedded programmable embedded solutions around the NI SOM
User Group
Chapter 8 NI Connect The NI Event in Austin, which has replaced the former NIWeek
Chapter 9 Generative Al Artificial intelligence (Al) models that generate digital content

Copilot An Al-supporting tool that is used in MS Office

Nigel The Al Assistant, which can be used within the LabVIEW development
environment in the future. As of today, It is still under development.

Quick-Drop Rapid insertion of VI from the pallet

Unit Tests Detects errors within software

Domain specific

Here in the context of domain-specific programming languages. In
contrast to general languages such as C/C++, they are designed to solve
problems in a very specific area. In LabVIEW, for example, the
acquisition, processing, storage and communication of data and signals
is very simple and possible at a high level of abstraction.

Minchwilen, Switzerland, June 2025, Marco Schmid, marco.schmid@schmid-elektronik.ch

Page 10

mailto:marco.schmid@schmid-elektronik.ch

